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Abstract

Benchmarking LLMs on Advanced Mathematical Reasoning

by

Jonathan Yue

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Dan Klein, Chair

Large Language Models (LLMs) have improved dramatically at mathematical reasoning,
progressing from basic arithmetic to olympiad level proofs. However, the existing, short-
answer based benchmarks can suffer from limited scope for complex reasoning and therefore
do not sufficiently measure the reasoning capabilities of LLMs. Formal proof-based bench-
marks exist, but the need to convert problem statements into formal languages limits the
scope of the problems. A potential reason for this significant gap in current literature is
the difficulty in grading proof problems at scale. To address this, we first propose an LLM-
as-a-judge framework to judge model-generated proofs and evaluated its efficacy. Then,
we propose a benchmark of 77 PhD-level proof questions, drawn from Roman Vershynin’s
“High-Dimensional Probability: An Introduction with Applications in Data Science”, and
challenged state-of-the-art LLMs with these questions. We evaluated the LLM-generated
solutions using the LLM-as-a-judge framework and found that, in general, state-of-the-art
LLMs are still unable to adequately complete these proofs.
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Chapter 1

Introduction

The advent of Large Language Models (LLMs) has resulted remarkable advancements in
artificial intelligence, with mathematical reasoning emerging as a significant area of interest.
LLMs have evolved from performing rudimentary arithmetic to assisting with mathematical
discover (Romera-Paredes et al., 2024), driven by increased model size and sophisticated
prompting techniques such as Chain-of-Thought (CoT) prompting (Wei et al., 2023) and
Tool-Integrated Reasoning (TIR) (Ahn et al., 2024).

Despite these strides, a considerable gap persists in evaluating the deeper reasoning capabil-
ities of LLMs. Existing benchmarks predominantly focus on short-answer or multiple-choice
questions, such as MATH (Hendrycks et al., 2021) and GSM8K (Cobbe et al., 2021). While
useful, these benchmarks often emphasize the final numerical output, potentially neglecting
the rigor of the intermediate reasoning steps and suffering from issues such as benchmark
saturation and data contamination (Hong et al., 2025; Petrov et al., 2025). Furthermore,
their limited scope may not sufficiently assess complex conceptual understanding or the abil-
ity to construct intricate arguments (K. Huang et al., 2025). The poor performance of LLMs
on problems that require rigorous proof generation, as opposed to numerical answers, sug-
gests a potential “reasoning illusion,” where success in some tasks might stem from pattern
matching or tool assistance rather than genuine mathematical insight (Petrov et al., 2025).

On the other hand, benchmarks centered on formal proofs, such as Minif2f (K. Zheng et
al., 2022) and PutnamBench (Tsoukalas et al., 2024), operate within the strict confines of
symbolic systems like Lean or Isabelle. While valuable for assessing mechanically verifiable
reasoning, the necessity of translating problem statements into these formal languages (aut-
oformalization) can be a challenging task itself, which restricts the breadth of problems that
can be addressed (Gulati et al., 2024; J. Zhang et al., 2025). This leaves a significant gap
in evaluating the generation of novel, natural language mathematical proofs, which are more
akin to human mathematical practice and crucial for interpretability. A primary obstacle to
developing benchmarks for such proofs is the inherent difficulty in grading them consistently
and at scale, as natural language proofs lack the immediate verifiability of formal proofs and
often require expert human evaluation (Frieder et al., 2023).



CHAPTER 1. INTRODUCTION 2

To address these limitations and bridge the gap in evaluating advanced mathematical rea-
soning in natural language, this paper makes two primary contributions. First, we propose
and evaluate an LLM-as-a-judge framework specifically designed for assessing the correct-
ness and coherence of mathematical proofs. This approach offers a scalable alternative to
manual expert evaluation. Second, leveraging this evaluation framework, we introduce a new
benchmark comprising 77 PhD-level proof-based questions, designed to rigorously test the
advanced reasoning capabilities of LLMs on problems requiring novel and intricate natural
language proofs.

We find that, despite recent progress, current leading LLMs are generally still unable to
adequately complete these complex proof-based tasks. This underscores the necessity for
more challenging benchmarks that probe deeper levels of mathematical understanding and
proof generation, thereby providing a more accurate measure of LLM reasoning abilities
and guiding future research towards developing more capable and robust AI systems for
mathematics.
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Chapter 2

Related works

2.1 LLM for mathematical reasoning

The introduction of Large Language Models (LLMs) has marked a significant turn in artificial
intelligence. Among the many applications, mathematical reasoning emerges as a key area
of exploration and advancement. This section surveys the development of LLMs in tackling
mathematical tasks.

Advances and Core Techniques in LLM Mathematical Reasoning

LLMs have rapidly improved at mathematical reasoning, progressing from simple arithmetic
to solving more complex problems (Liu et al., 2025). A key driver for this progress is the
increase in model size. Larger models follow instructions better and reason more effectively.
Research shows that LLMs with over 100 billion parameters can solve difficult math problems
with the right prompts (Forootani, 2025).

The discovery of several techniques have augmented this improvement due to model scale.
A major cornerstone in this area is Chain-of-Thought (CoT) prompting. It guides LLMs
to list steps in their reasoning before giving a final answer. This results in an improvement
in both the performance on complex tasks and the interpretability of the reasoning process.
Wei et al., 2023 showed that CoT prompting allows LLMs to deconstruct problems they
would usually fail. Researchers have built upon basic CoT with more advanced versions and
new types of “thinking” models. Examples include SoftCoT (Y. Xu et al., 2025), Continuous
CoT (Cheng & Durme, 2024), and Coconut (Hao et al., 2024). SoftCoT, for instance, utilizes
a smaller assistant model to generate “soft thought tokens” which are then projected into
the primary LLM’s representation space through a trainable module. This fine-tuning ap-
proach is parameter-efficient and has demonstrated enhanced performance on mathematical
reasoning benchmarks.

The emergence of models explicitly designed for “thinking,” such as OpenAI’s O1 and



CHAPTER 2. RELATED WORKS 4

DeepSeek-R1, represents a notable progression. These models often take more time to reason
during inference and are trained with Reinforcement Learning (RL) to build advanced cogni-
tive skills like self-checking and reflection. DeepSeek-R1, for example, is reported to develop
CoT reasoning capabilities autonomously through a pure RL training paradigm (DeepSeek-
AI et al., 2025). Multi-round Thinking, where a model uses previous answers to try again
and improve, has also led to better results, as seen in models like QwQ-32B and DeepSeek-R1
on difficult benchmarks such as AIME 2024 (Tian et al., 2025). RL-based reasoning methods
are also being used in multimodal LLMs. Vision-R1, for instance, uses Progressive Thinking
Suppression Training (PTST) to improve performance in solving multimodal math problems
(W. Huang et al., 2025).

To address LLMs’ weakness in precise numerical calculation and rigorous symbolic manip-
ulation, Tool-Integrated Reasoning (TIR) has gained prominence (Ahn et al., 2024). TIR
lets LLMs hand off subparts of a problem to tools like Python for math or symbolic solvers
for algebra. This improves accuracy, especially when high precision or structured math is
needed. For example, the winning solution in the AIMO-2 competition used CoT fine-tuning
first, then fine-tuned again on a TIR dataset. This helped the model combine natural lan-
guage reasoning with structured computation (Moshkov et al., 2025). TIR frameworks like
TATA (Teaching LLMs According to Their Aptitude) (X. Xu et al., 2025) help models choose
between CoT and TIR depending on the problem.

Still, LLMs struggle with highly advanced math problems, especially ones needing full proofs
like those in math olympiads. A recent work evaluated state-of-the-art LLMs on 2025 US-
AMO problems. The results show significant limits (Petrov et al., 2025). Even a leading
model like Gemini-2.5-PRO achieved an average score of only 25%, with other prominent
models scoring below 5%. Common failure modes included flawed logical steps, introduction
of unjustified assumptions, a lack of creative problem-solving strategies, and a tendency to
falsely claim that a problem had been solved.

The observed discrepancy between LLM performance on benchmarks requiring numerical
answers and those requiring rigorous proof generation suggests a potential “reasoning illu-
sion.” While techniques like CoT and TIR demonstrate improvements on certain types of
mathematical problems, the poor performance on proof-based tasks suggests that these im-
provements might not always translate to genuine, deep mathematical understanding. LLMs
may be leveraging pattern matching and tool-assisted computation to succeed in numerical
answer-oriented tasks, without necessarily developing deep logical deductive capabilities.
This illustrates the critical need for benchmarks that specifically evaluate these deeper rea-
soning and proof-generation abilities.

Formal vs. Informal Mathematical Reasoning by LLMs

Mathematical reasoning by LLMs can be broadly categorized into two domains: formal math-
ematical reasoning, which operates under the rigorous syntax of symbolic systems and proof
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assistants, and informal mathematical reasoning, which expresses mathematics in natural
language.

Formal Mathematical Reasoning

This sub-field is characterized by its emphasis on mechanical verifiability and logical rigor.

LLMs for Formal Proof Generation (Lean, Isabelle, etc.): Much research is dedicated
to training LLMs to generate proofs in formal languages such as Lean 4 (J. Zhang et al.,
2025) and Isabelle (X. Zhao et al., 2024). The goal of this line of research is to develop
systems that can autonomously produce machine-verifiable mathematical proofs.

Several notable models and systems have demonstrated progress. AlphaGeometry made
headlines by solving Olympiad-level geometry problems. It combined a language model,
which suggests potentially useful geometric constructions, with a symbolic deduction engine
that formally verifies these steps. A key component of its development was the generation
of 100 million synthetic data examples for training (Trinh et al., 2024). An improved ver-
sion, AlphaGeometry2 extended its formal language to handle a wider range of geometric
problems and leveraged the Gemini architecture. AlphaGeometry2 reportedly surpassed the
average performance of human gold medalists on a benchmark of IMO geometry problems
(Chervonyi et al., 2025).

The Self-play Theorem Prover (STP) addresses the critical issue of data scarcity in
formal mathematics by employing a dual-agent system: a conjecturer that proposes new
theorems and a prover that attempts to prove them. This self-play loop allows the system
to iteratively generate its own training data, which results in significant performance im-
provements on various reasoning benchmarks (Dong & Ma, 2025). Goedel-Prover is an
open-source LLM designed for formal proof generation in Lean 4. It achieved state-of-the-art
results by first formalizing a large dataset of natural language math problems into Lean 4
statements and then employing an expert iteration strategy to train the prover (Lin et al.,
2025). Kimina-Prover Preview developed a reasoning-driven exploration paradigm, utilizing
large-scale RL based on Qwen2.5-72B to generate proofs in Lean 4. This approach has also
set new SOTA performance on the miniF2F benchmark (H. Wang et al., 2025).

Despite these advancements, a key challenge remains the scarcity of large-scale, high-quality
datasets of formalized mathematical statements and proofs. The rigorous syntax of formal
languages often makes proof generation in these systems more difficult for LLMs compared
to natural language (J. Zhang et al., 2025).

Autoformalization: This critical sub-area focuses on the automatic translation of informal
mathematical language into formal languages that can be processed by proof assistants.
LLMs like GPT-4 have considerably advanced autoformalization capabilities through in-
context learning. Techniques such as back-translation, where existing formal statements are
automatically informalized into natural language to result in synthetic pairs of formal and
informal mathematical statements, have been explored to augment training data (Yang et
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al., 2024).

However, autoformalization remains a difficult task, especially for complex or abstract math-
ematical concepts (Gulati et al., 2024). LLMs can struggle with selecting the correct pream-
bles or library imports from vast formal mathematics libraries and may even generate refer-
ences to non-existent preambles. Evaluating autoformalization faithfulness—that the formal
statement accurately captures the semantics of the original informal input—remains an area
of ongoing research.

Informal (Natural Language) Mathematical Proofs

This domain concerns the generation and comprehension of mathematical proofs, in the form
most familiar to humans: in natural language.

Current Landscape: While CoT techniques enabled LLMs to generate natural language
step-by-step reasoning, there has been relatively little research into the generation of rigorous
and verifiable natural language mathematical proofs for complex problems. Much of the
existing work on mathematical reasoning in LLMs focuses on solving problems that yield
numerical or short-form answers.

The generation and evaluation of natural language proofs by LLMs present a unique set of
challenges:

• Verifiability: A fundamental difficulty lies in the automated verification of natural
language proofs. Unlike formal proofs, which can be mechanically checked by proof
assistants, natural language proofs typically require human expert evaluation or highly
sophisticated AI-driven verifiers. Even minor errors in logic or calculation can invali-
date an entire proof, and these can be difficult for current systems to reliably detect
in a natural language context.

• Ambiguity: Natural language is inherently ambiguous and often relies on implicit
contextual knowledge and common sense. For instance, whether omitting certain steps
in a mathematical argument is acceptable depends on the assumed level of familiarity
of both the author and the audience. LLMs might not fully grasp these ambiguities
and maintain the necessary level of precision throughout a proof. Another concern
is that an LLM may inadvertently exploit these ambiguities and pretend as if it had
completed a proof.

• Data Scarcity for Complex Proofs: High-quality, large-scale datasets of complex
natural language proofs, particularly those with detailed step-by-step annotations or
explanations of reasoning, are scarce. This is especially true for niche or advanced
mathematical topics.

The comparatively smaller volume of research focused on generating and verifying natural
language mathematical proofs by LLMs, as opposed to formal proofs or problem-solving
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with numerical answers, may be attributed to several factors. Formal systems and proof
assistants make formal proof generation an attractive target for AI research as it provides a
clear, objective measure of correctness. This reliable feedback loops for model training and
evaluation stands in contrast to the inherent ambiguity of natural language. Additionally,
formal mathematics libraries (e.g., Mathlib for Lean) offer a growing, structured, and verified
corpus of mathematical knowledge. The field of Automated Theorem Proving (ATP) also
has a long-standing tradition in AI, historically focusing on formal logic.

Despite these challenges, we believe that the generation and evaluation of complex informal
mathematical proofs is vitally important. Natural language proofs are often more inter-
pretable, which makes them more desirable in many settings. For instance, in an education
setting, capabilities in complex mathematical reasoning may allow for more efficient proof
grading or student hint generation. The space of mathematical reasoning can also act as a
testbed to AI reasoning in less-defined real-world environments, where formalization would
be nearly impossible and where interpretability would be ever more important.

2.2 Benchmarking Mathematical Reasoning in Large

Language Models

The evaluation of mathematical reasoning capabilities in LLMs relies heavily on benchmarks.
This section reviews existing benchmarks, categorizing them by their focus and problem
types, and critically examines their limitations.

Short-Answer Benchmarks

These benchmarks typically assess LLMs on mathematical problems where the expected
output is a final numerical answer or a concise textual response. Prominent examples include:

• MathQA (Amini et al., 2019): Derived from the AQuA dataset, MathQA presents
math word problems with multiple-choice answers. It was designed with an empha-
sis on interpretability by mapping problems to sequences of predefined mathematical
operations (Amini et al., 2019).

• MATH (Hendrycks et al., 2021b): This dataset is comprised of challenging prob-
lems from mathematics competitions such as the American Mathematics Competi-
tions (AMC 10/12) and the American Invitational Mathematics Examination (AIME).
While solutions often require multiple reasoning steps, evaluation typically focuses on
the correctness of the final numerical answer (Hendrycks et al., 2021).

• GSM8K (Cobbe et al., 2021): Consisting of grade school mathematics word prob-
lems, GSM8K is designed to test multi-step arithmetic reasoning. Models are expected
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to produce a numerical answer derived through a sequence of calculations (Cobbe et
al., 2021).

Despite their widespread use, these short-answer benchmarks face several criticisms:

• Emphasis on Final Answers: A primary limitation is their predominant focus on
the correctness of the final answer, often neglecting the intermediate reasoning steps.
This evaluation approach can inadvertently reward models that arrive at the correct
solution through flawed reasoning processes (Petrov et al., 2025).

• Benchmark Saturation: Many of these benchmarks are rapidly approaching satu-
ration, with state-of-the-art LLMs achieving very high accuracy scores (e.g., over 97%
on GSM8K as reported in Budagam et al., 2024). This saturation diminishes their
efficacy in differentiating the capabilities of advanced models.

• Data Contamination and Overfitting: A significant concern is the potential for
benchmark data to have been included in the vast training corpora of LLMs. This
data contamination can lead to inflated performance metrics that reflect memorization
rather than true reasoning ability. Studies that have created perturbed versions of these
benchmarks, such as GSM1k (a contamination-free version of GSM8K) (H. Zhang et
al., 2024) and RV-Bench (which introduces random variables into MATH problems)
(Hong et al., 2025), have often observed notable performance drops, suggesting that
models may be overfitting to the original benchmark distributions.

• Limited Scope for Complex Reasoning: These benchmarks, often centered on
arithmetic or basic algebraic manipulation, may not adequately test deeper concep-
tual understanding, abstract reasoning, or the ability to construct complex proofs (K.
Huang et al., 2025). MathQA, for example, explicitly omits problems involving higher-
order polynomials or entirely non-numeric solutions.

• Sensitivity to Input Perturbations: LLM performance on these benchmarks can be
surprisingly fragile, exhibiting significant degradation in response to minor alterations
in problem phrasing, numerical values, or the introduction of irrelevant information.
This sensitivity suggests a lack of robust understanding of underlying mathematical
principles. For instance, MATH-P-Hard introduces hard perturbations to MATH prob-
lems so that the original solution steps don’t apply, resulting in significant performance
drops. The researchers found that the models blindly apply learned problem-solving
tactics even towards unsuitable problems (K. Huang et al., 2025).

• Lack of Diversity in Problem Types and Assessed Reasoning Skills: Existing
benchmarks may not encompass a sufficiently broad range of mathematical topics or
the diverse cognitive skills required for advanced mathematical thought. The MaTT
benchmark, for example, found that LLM performance can vary significantly even
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across closely related subtopics within the same general mathematical area (Davoodi
et al., 2025).

Olympiad-Level and Proof-Focused Benchmarks

To address the limitations of short-answer benchmarks and to probe more advanced mathe-
matical reasoning, several benchmarks focusing on Olympiad-level problems and proof gen-
eration have been developed.

• Minif2f (K. Zheng et al., 2022): This benchmark provides a collection of 488
formal problem statements derived from Olympiad-level mathematics (AIME, AMC,
IMO) and undergraduate courses, formalized in multiple interactive theorem proving
systems like Lean, Isabelle, and HOL Light. It primarily covers algebra, number theory,
and inequalities, with formalizations done manually.

• PutnamBench (Tsoukalas et al., 2024): Sourced from the challenging William
Lowell PutnamMathematical Competition, PutnamBench features 1692 hand-constructed
formalizations of 640 theorems in Lean 4, Isabelle, and Coq. Current models have
demonstrated very limited success on this benchmark, solving only a handful of the
problems.

• Omni-math (Gao et al., 2025): This benchmark aims to be a universal Olympiad-
level mathematics evaluation suite, comprising 4,428 problems spanning 33 sub-domains
and 10 difficulty levels. It utilizes GPT-4o as a judge (Omni-Judge) for evaluating an-
swers, which are typically numerical or SymPy objects.

• FrontierMath (Glazer et al., 2024): This benchmark introduces hundreds of orig-
inal, exceptionally challenging mathematics problems at the advanced undergraduate,
graduate, and research levels, crafted and vetted by expert mathematicians. It covers
a broad range of modern mathematics and employs automated verification for com-
putable answers (often large integers or SymPy objects). The problems are novel and
not released, so there is minimal risk of data contamination. State-of-the-art LLMs
currently solve fewer than 2% of these problems .

• FormalMATH (Yu et al., 2025): A large-scale benchmark consisting of 5,560
formally verified mathematical statements in Lean 4, significantly larger than miniF2F.
Evaluations of LLM-based theorem provers on FormalMATH revealed low success rates
(e.g., Kimina-Prover achieved 16.46% pass@32) and pronounced domain bias, with
models performing better in algebra but struggling in areas like calculus.

These advanced benchmarks, while pushing the boundaries of difficulty, still tend to focus
on problems with verifiable numerical or symbolic answers (Omni-math, FrontierMath) or
on proofs within formal systems (Minif2f, Putnam Bench, FormalMath). The benchmarks
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focusing on formal proofs also have a relatively narrow scope, focusing on algebra and number
theory, with less coverage of problem types that are harder to express in certain formal
systems, such as geometry or probability. Thus, these benchmarks may not fully represent
the breadth of mathematical topics. This leaves a gap in evaluating the generation of novel
natural language proofs, particularly in sub-domains not emphasized by these benchmarks.

2.3 LLM-as-a-Judge for Evaluating Mathematical

Reasoning

The paradigm of using Large Language Models as evaluators, commonly termed “LLM-as-a-
judge,” has gained considerable traction as a scalable alternative to human assessment. While
research in LLM-as-a-judge techniques has previously focused on natural language generation
tasks such as text summarization, we hope that this framework can be generalized to natural
language mathematical arguments. This section delves into the methodologies behind LLM-
as-a-judge systems, their application to evaluating mathematical reasoning and proofs, and
the associated challenges of performance, reliability, and inherent biases.

Methodologies and Applications of LLM-as-a-Judge

The fundamental concept of LLM-as-a-judge involves employing capable LLMs, often large,
general-purpose frontier models like GPT-4, to assess the quality of outputs generated by
other LLMs or even human-produced text. The primary motivation is to approximate human
preferences and judgments at scale, thereby reducing the time and cost associated with
manual annotation and evaluation.

Several common methodologies are employed in LLM-as-a-judge systems (Li et al., 2024):

• Pointwise Scoring: This approach involves the LLM judge assigning a direct numerical
score to a single response. The score can be on a Likert scale (e.g., 1 to 5) or a
continuous scale, reflecting the perceived quality of the response based on predefined
criteria or an overall assessment.

• Pairwise Comparison/Ranking: In this setup, the LLM judge is presented with two (or
more) responses to the same prompt or problem and is tasked with determining which
response is superior or providing a relative ranking. This method is frequently used in
benchmarks like MT-Bench and Chatbot Arena for evaluating conversational AI.

• Listwise Judgment: This extends pairwise comparison to scenarios where the LLM
judge evaluates and ranks a list of multiple responses simultaneously.

The LLM-as-a-judge paradigm was initially prominent in the evaluation of general Natural
Language Generation (NLG) tasks such as text summarization, machine translation, and
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dialogue systems. However, it is increasingly being explored for more structured and spe-
cialized domains. For instance, Stephan et al., 2025 have investigated the application of
LLM judges to mathematical problems in a pair-wise comparison fashion.

Metrics for Judge Performance

• Correlation with Human Experts: A primary indicator of an LLM judge’s utility
is the degree to which its evaluations align with those provided by human experts in
the domain. High correlation coefficients are often cited as evidence of the LLM judge’s
ability to capture human-like assessment criteria (Gu et al., 2025).

• Consistency: An ideal LLM judge should produce consistent evaluations for seman-
tically similar inputs or when irrelevant factors, such as the order of presentation in
pairwise comparisons, are altered. However, achieving high consistency is often chal-
lenging due to inherent biases.

• Accuracy: In domains like mathematics, where the correctness of a short-answer
question can be objectively determined, the accuracy of the LLM judge’s assessment
(e.g., correctly identifying a proof as valid or invalid) becomes a key metric.

Known Biases

LLM judges are not infallible and have been shown to exhibit several systematic biases that
can distort their evaluations:

• Position Bias: LLM judges may favor responses presented in a particular position,
most commonly the first response in a pairwise comparison, irrespective of content
quality. L. Zheng et al., 2023 highlighted this as a significant issue, finding that GPT-
4 exhibited a preference for the first presented answer in over 60% of cases when
evaluating similar responses .

• Verbosity Bias: LLM judges may show a preference for longer, more verbose re-
sponses, even if these responses are not necessarily more accurate, clear, or substan-
tively better than shorter alternatives (L. Zheng et al., 2023).

• Self-Preference/Self-Enhancement Bias: LLMs can exhibit a bias towards out-
puts generated by themselves or by models from the same family or with a similar
architectural style (L. Zheng et al., 2023). Research suggests this bias might be linked
to the LLM judge preferring texts that have lower perplexity under its own language
model—that is, texts that are more familiar or predictable to it (Wataoka et al., 2024).

• Style/Superficial Reflection Bias: LLM judges can be unintentionally influenced
by the writing style, fluency, or other superficial characteristics of a response, rather
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than its core correctness and logical rigor. A specific form of this, superficial reflection
bias, has been identified where reasoning-focused LLMs are swayed by phrases that
merely mimic reasoning (e.g., “let me think...”) without necessarily reflecting sound
logic (Q. Wang et al., 2025).

Mitigating these biases is crucial for developing reliable LLM-as-a-judge systems.

LLM-as-a-Judge in the Context of Mathematical Proofs

The use of LLMs in automated grading and feedback systems for mathematical proofs is
an emerging area. Systems for autograding specific types of proofs, such as mathematical
induction proofs, have shown promise (C. Zhao et al., 2025). MATH-Minos is a system
that aims to improve mathematical verifiers (critics) by training them with stepwise natural
language feedback (Gao et al., 2024). This approach helps the verifier learn to identify
various types of errors, including logical flaws, more effectively than training with binary
correct/incorrect labels alone.

There is also progress made on LLM self-verification and self-correction in mathematical
reasoning. SelfCheck (Miao et al., 2023) uses a zero-shot method to enable an LLM to
check its own step-by-step reasoning. It prompts the model to regenerate each step based
on the preceding ones and then compare the regenerated step with the original. It has
demonstrated some effectiveness in improving final answer accuracy on math word problem
benchmarks like GSM8K, MathQA, and MATH (Miao et al., 2023). TheNatural Program
framework proposed by Ling et al., 2023 uses a natural language-based deductive reasoning
format that structures CoT outputs to facilitate step-by-step self-verification by the LLM.
Each step explicitly cites its premises, allowing for focused verification. While this can
improve the rigor of the reasoning chain, its effectiveness can be hampered by the inherent
ambiguities of natural language.

Applying the LLM-as-a-judge paradigm to the evaluation of mathematical proofs introduces
specific challenges due to the nature of mathematical argumentation. Mathematical proofs
demand strict logical coherence and deductive validity. LLM judges must therefore go be-
yond surface-level textual understanding to assess whether each step in a proof is logically
sound. This is a significantly more demanding task than evaluating general text quality or
stylistic attributes. A particularly subtle challenge is dealing with novelty of a proof strategy.
An LLM judge, potentially trained on a vast corpus of existing mathematical texts, might
favor standard, familiar proof techniques over novel, creative, yet correct approaches, simply
because the latter are less represented in its training data.

Additionally, there is evidence suggesting a strong relationship between an LLM’s ability to
solve mathematical problems and its capacity to judge solutions to those problems. Krumdick
et al., 2025 found that an LLM judge’s performance in assessing correctness is significantly
impacted by its own ability to answer the question at hand: judges tend to struggle with
evaluating responses to questions they themselves cannot solve accurately.
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Chapter 3

Data collection

Aiming to ultimately measure state-of-the-art models’ mathematical reasoning capabilities,
we use two sources of data in this work, corresponding to the two main components of this
work. First, to evaluate the efficacy of our proposed LLM-as-a-judge framework, we use
a data set of 100 student proof attempts and the corresponding course staff evaluations
on a pre-defined rubric. Secondly, to benchmark the capacity of state-of-the-art LLMs in
producing advanced mathematical reasoning, we sourced a publicly available graduate-level
math textbook and a publicly available set of solutions to some of the exercise problems in
the textbook.

3.1 Ground truth human proof evaluation

To measure the efficacy of our LLM-as-a-judge framework, we need a source of ground truth
proof evaluation developed by human experts. This way, we can compare the evaluation
done by humans and by the LLM.

The data for this study came from student responses (and the corresponding course staff
evaluations) to proof-based questions in final exam of the fall 2018 session of EECS 16A, an
undergraduate introductory linear algebra course at the University of California, Berkeley,
taught by Professor Vladimir Stojanovic and Professor Gireeja Ranade. The exam questions
and evaluations are credited to the professors and course staff members.

The student answers were collected in accordance with the IRB approval we received and
are fully anonymized. A total of 100 student answers were collected. The digital scans of
the students’ responses were converted into LaTeX format to ensure a standardized and
analyzable dataset.

In addition to the student-generated content, the dataset includes evaluations of each stu-
dent’s answer conducted by the EECS 16A course staff. These evaluations were performed
using a 4-point scoring rubric designed to assess the correctness of the proofs. The rubric
categories were defined as follows:
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• +4 points (Completely correct): The proof was logically sound, well-structured, and
demonstrated a complete understanding of the concepts, with no mathematical errors.

• +3 points (Correct but small error): The proof was largely correct and demonstrated
a good understanding, but contained minor inaccuracies or omissions that did not
fundamentally undermine the overall argument (e.g., a computational slip, a missing
minor condition).

• +2 points (Major error): The proof exhibited significant flaws, such as a misunder-
standing of key definitions or theorems, or a critical logical gap.

• +0 points (Incorrect/Blank): The response was entirely incorrect, irrelevant to the
question asked, or left blank.

This collection process yielded a rich dataset comprising the students’ original proof attempts
and corresponding expert assessments of their quality.

3.2 Mathematical text and ground truth solutions

This study uses the content and exercises in the first edition of Roman Vershynin’s “High-
Dimensional Probability: An Introduction with Applications in Data Science” (Vershynin,
2018) as a base for a data set in advanced mathematical reasoning. This textbook is pub-
licly available. 1 It was selected because it contained difficult concepts that required deep
and nuanced mathematical understanding. Its introduction describes its intended audi-
ence as “doctoral and advanced masters students and beginning researchers in mathematics,
statistics, electrical engineering, computational biology and related areas” and describes a
prerequisite of “a rigorous course in probability theory (on Masters or Ph.D. level)”.

The focus of the book, probability, means that the book does not contain many figures.
This is ideal because we are not directly interested in models’ multi-model capabilities.
Probability is also an area where it is difficult to convert into formal math language, so it is
under-represented in formal math data sets.

Additionally, the book has a gradient in difficulty. The initial chapters introduce foundational
concepts at a relatively accessible level (e.g. classical inequalities in probability), while the
complexity and specificity of topics in later chapters present challenges that are not readily
solvable by current state-of-the-art LLMs.

For the purpose of establishing verifiable ground truth solutions to exercises from this text-
book, we draw upon a publicly accessible GitHub repository. 2 This repository contains
solutions developed by Pingbang Hu, a Ph.D. candidate at University of Illinois Urbana-
Champaign. These solutions are treated as the benchmark against which problem-solving

1https://www.math.uci.edu/ rvershyn/papers/HDP-book/HDP-book.html
2https://github.com/sleepymalc/HDP-Solution

https://www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-book.html
https://github.com/sleepymalc/HDP-Solution
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attempts are compared. We have done some cursory cross-checking of these solutions to
confirm the accuracy of these solutions.

The solutions already come in LaTeX format, and the textbook is converted into LaTex
through OCR methods. We run experiments using both of these sources but will not redis-
tribute them.

In total, 77 exercise questions were chosen across chapters 0 through 6 of the book, covering
topics such as concentration inequalities, high-dimensional random vectors and matrices, and
quadratic forms. Vershynin also helpfully indicated the difficulty of these exercises, ranging
from trivial (1) to challenging (4). A summary statistic of the questions is as follows:

chapter num questions avg difficulty
0 2 2.0
1 4 1.0
2 23 1.91
3 17 2.24
4 15 1.8
5 7 2.86
6 9 1.89

An example [question, ground truth answer] tuple is shown in Figure 5.1.

Combined, the textbook and solution provide an ideal test set to evaluate models’ ability to
construct novel mathematical arguments and reason in unfamiliar domains.
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Chapter 4

LLM-as-a-judge for mathematical
proofs

In this chapter, we aim to develop and evaluate an LLM-as-a-judge framework for assessing
the correctness and quality of natural language mathematical proofs. We approach the
development iteratively, exploring different ways of incorporating rubrics to guide the LLM’s
evaluation process. Our goal is to understand how different rubric strategies impact the
LLM’s ability to align with human expert judgment. We experiment with the following
three approaches of evaluating proofs using the data in Section 3.1.

• Baseline: LLM-as-a-judge with no rubric

In this initial approach, we establish a baseline for LLM performance without a rubric.
The LLM is tasked with evaluating student-generated proofs on a 4-point scale, where
4 represents a fully correct proof and 0 a fully incorrect proof. No additional instruction
is given about how the model should give out partial credit. This method assesses the
model’s ability to directly quantify the goodness of a solution.

• LLM-as-a-judge with ground truth rubric

This iteration leverages the detailed, pre-existing rubric that was used by the course
staff to grade the student answers. This ground truth rubric, as described in our
data collection section, consists of a 4-point scale with specific descriptors for what
constitutes a completely correct proof, a proof with small errors, a proof with major
errors, or an incorrect/blank response. The LLM is provided with the student’s proof
and this exact course-staff rubric. Its task is to assign a score to the proof according
to the given rubric’s criteria. This setup aims to test how well the LLM can internalize
and apply a detailed, externally validated scoring guide, with the hopes of producing
evaluations that are more closely aligned with the original human graders’ intentions.
The primary challenge here lies in the LLM’s ability to accurately interpret the nuanced
language of the rubric and consistently apply it to diverse student responses.



CHAPTER 4. LLM-AS-A-JUDGE FOR MATHEMATICAL PROOFS 17

• LLM-as-a-judge with automatic rubric generation as an intermediary step

In many real-world scenarios, a detailed, validated rubric like the one provided by
course staff may not be available. To address this, we explore a two-stage process
where an LLM first automatically generates a rubric, which is then used by an LLM
(could be the same or a different model) to judge the student proofs. The motivation is
to create a more scalable and adaptable framework that does not rely on pre-existing,
human-annotated rubrics for every new problem.

For the rubric generation phase, we prompt an LLM as if it were a course staff member
tasked with creating a grading scheme. The LLM is provided with the specific proof
problem and the corresponding staff-provided model answer. It is then instructed to
identify the most critical logical steps in the solution. A sample generated rubric can be
seen in Figure 4.1. As seen in the figure, with appropriate prompting, LLMs are capable
of identifying the key steps used in the proof and create a detailed rubric. They are also,
to a certain extent, able to understand the nuances of the natural language proof. For
instance, it understands that the staff solution derived v⃗Tℓ Qv⃗k = v⃗Tℓ A

TAv⃗k = v⃗Tℓ λkv⃗k
from using the eigenvector equation, which is not explicitly stated in the solution. The
model’s ability to infer the intended logical flow from the staff solution is persistent,
even when tasked with more difficult proofs.

The quality of the subsequent proof evaluation in this framework heavily depends on
the relevance and accuracy of the auto-generated rubric. This approach introduces an
additional layer of complexity but offers the potential for a highly automated assess-
ment pipeline.
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Question: Given two distinct eigenvalue/eigenvector pairs, (λk, v⃗k) and (λℓ, v⃗ℓ), show that
for the symmetric matrixQ = ATA, if λk ̸= λℓ then ⟨v⃗k, v⃗ℓ⟩ = 0 (i.e. any pair of eigenvectors
with distinct eigenvalues is orthogonal). Hint: Qv⃗k = λkv⃗k and v⃗Tℓ Q = λℓv⃗

T
ℓ .

Solution: Consider
v⃗Tℓ Qv⃗k = v⃗Tℓ A

TAv⃗k = v⃗Tℓ λkv⃗k

v⃗Tℓ Qv⃗k = v⃗Tℓ A
TAv⃗k = λℓv⃗

T
ℓ v⃗k

We see the two expressions
on the left are equal, so set
the two expressions on the
right equal to each other:

λkv⃗
T
ℓ v⃗k = λℓv⃗

T
ℓ v⃗k

If λk ̸= λℓ, then the only
possible solution is that
v⃗Tℓ v⃗k = 0, which means v⃗ℓ
and v⃗k are orthogonal.

Rubric: max score: 4
+1: Use the right eigenvalue equation Qv⃗k = λkv⃗k to com-
pute v⃗Tℓ Qv⃗k = λkv⃗

T
ℓ v⃗k. This step demonstrates the ability

to apply the given eigenvalue equation for the eigenvector
v⃗k and manipulate the expression to isolate the dot prod-
uct, showing understanding of how eigenvalues relate to the
matrix action.
+1: Use the left eigenvalue equation v⃗Tℓ Q = λℓv⃗

T
ℓ to com-

pute v⃗Tℓ Qv⃗k = λℓv⃗
T
ℓ v⃗k. This step applies the left eigen-

value equation for v⃗ℓ, highlighting the symmetry properties
or given conditions of Q, and reinforces the connection be-
tween left eigenvectors and the matrix transpose in symmet-
ric matrices.
+1: Set the two expressions for v⃗Tℓ Qv⃗k equal, yielding
λkv⃗

T
ℓ v⃗k = λℓv⃗

T
ℓ v⃗k. This step involves recognizing that both

derivations represent the same scalar quantity, allowing the
formation of an equation that links the eigenvalues and the
dot product, which is crucial for subsequent algebraic ma-
nipulation.
+1: Given λk ̸= λℓ, conclude that v⃗Tℓ v⃗k = 0, implying
orthogonality. This step requires solving the equation al-
gebraically, noting that unequal coefficients imply the dot
product must be zero, and demonstrates the logical infer-
ence from the eigenvalue difference to vector orthogonality
in the context of symmetric matrices.

Figure 4.1: Sample (Question, Answer, Rubric) tuple for evaluating LLM-as-a-judge. Cor-
respondence between the solution and LLM-generated rubric is shown in color

4.1 Evaluation

We evaluate each of the aforementioned LLM-as-a-judge frameworks using the dataset of
100 student answers from the undergraduate linear algebra course. The primary metric
for assessing performance is the Pearson correlation coefficient between the scores assigned
by the LLM framework and the ground truth scores provided by the course staff. Higher
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correlation values generally indicate better agreement between the LLM’s judgment and
human expert evaluation (Gu et al., 2025). We generated the rubric and all evaluations
using Grok 3 mini with reasoning (xAI, 2025). This model was chosen because it is one
of the state-of-the-art models on general reasoning tasks, which helps with understanding
the nuances of the staff solution, as well as the generation and evaluation of mathematical
arguments.

The quantitative results of our evaluation, specifically the Pearson correlation coefficients,
are summarized in Table 4.1. Visualizations of the LLM scores versus human scores for
different rubric configurations are presented in Figure 4.2.

LLM-as-a-judge Framework Pearson Correlation (ρ)
Baseline: LLM with manually generated rubric 0.786
LLM with human-generated rubric 0.874
LLM with LLM-generated rubric 0.857

Table 4.1: Correlation of LLM-as-a-judge frameworks with ground truth scores.

(a) Baseline (no rubric) (b) Human-generated rubric (c) LLM-generated rubric

Figure 4.2: The distribution of LLM-as-a-judge score vs. ground truth score.

As seen from these results, LLM-as-a-judge performs best with the course staff created rubric,
achieving a correlation of 0.874. It performs the worst when no rubric was provided at all.
We see that the LLM-generated rubric performs nearly as well as the course staff created one,
suggesting that it can act as an effective proxy for the true rubric in settings where that is
not available. Due to this result, in the following sections, all evaluation on LLM-generated
math proofs will first generate an intermediate rubric, then grade the solution in accordance
with that rubric.

We now present an example of when the LLM-generated rubric helped with alignment with
human experts.
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Question: Same as in Figure 4.1

Student solution: [Ground truth score: 0/4] We have that Qv⃗k = λkv⃗k and v⃗ℓ
TQ = λℓv⃗ℓ

T .
Also, Q = ATA = VΛV−1 where V is the matrix of eigenvectors as columns and Λ is
the matrix of λ as diagonals. Because Q is symmetric, V is an orthonormal matrix, which
means that each of the columns of V is orthogonal to the others. The columns of V are
v⃗k and v⃗ℓ (there could be more). Since v⃗k and v⃗ℓ are orthogonal, ⟨v⃗k, v⃗ℓ⟩ = 0 because
⟨v⃗k, v⃗ℓ⟩ = ∥v⃗k∥∥v⃗ℓ∥ · cos(90◦) and cos(90◦) = 0.

Evaluation without rubric:
The student correctly identify that Q = ATA
is symmetric and use the property that sym-
metric matrices have orthonormal eigenvec-
tors. Additionally, they provide an informal
explanation using the cosine of 90 degrees,
which, while not necessary, shows some intu-
ition.
However, there are several issues that prevent
a perfect score. The student did not use the
provided hint, which suggested manipulating
the equations Qv⃗k = λkv⃗k and v⃗Tℓ Q = λℓv⃗

T
ℓ to

directly show orthogonality. Instead, they re-
lied on the spectral theorem and diagonaliza-
tion, which is valid but bypasses the intended
derivation and may not demonstrate the same
level of engagement with the specific matrix
operations.
Despite these shortcomings, the student’s rea-
soning is logically sound and arrives at the
correct conclusion. This warrants a score de-
duction for not adhering to the hint, but the
answer is still largely correct.
Final score: 3/4

Evaluation with LLM rubric:
+0: Use the right eigenvalue equation
Qv⃗k = λkv⃗k to compute v⃗Tℓ Qv⃗k = λkv⃗

T
ℓ v⃗k.

The student mentioned the eigenvalue
equation for v⃗k but did not manipulate
it to isolate the dot product as required.
+0: Use the left eigenvalue equation
v⃗Tℓ Q = λℓv⃗

T
ℓ to compute v⃗Tℓ Qv⃗k =

λℓv⃗
T
ℓ v⃗k. The student wrote an incorrect

expression v⃗ℓ
TQv⃗ℓ = λℓV⃗ℓ

T
, which does

not properly use the left eigenvalue equa-
tion to compute v⃗Tℓ Qv⃗k.
+0: Set the two expressions for v⃗Tℓ Qv⃗k
equal, yielding λkv⃗

T
ℓ v⃗k = λℓv⃗

T
ℓ v⃗k. The

student did not compute or set equal any
expressions for v⃗Tℓ Qv⃗k.
+0: Given λk ̸= λℓ, conclude that v⃗

T
ℓ v⃗k =

0, implying orthogonality. The student
concluded orthogonality but based it on
the orthonormality of the eigenvector ma-
trix due to Q being symmetric, not on
solving the equation λkv⃗

T
ℓ v⃗k = λℓv⃗

T
ℓ v⃗k al-

gebraically as specified.
Final score: 0/4

Figure 4.3: LLM-generated rubric successfully steered evaluation towards alignment with
the correct score. The student solution exhibited circular logic, assuming that a symmetric
matrix’s eigenvectors are orthonormal. The evaluation without rubric was unable to identify
this mistake. Additionally, it was also distracted by the student’s use of cosine. It acknowl-
edged that it as an unnecessary step but counted it in favor for the student (“shows some
intuition”). Evaluation with LLM-generated rubric correctly judged this proof.
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Chapter 5

LLM natural language proof-writing

In this chapter, we shift our focus from evaluating student-generated proofs to assessing the
capabilities of Large Language Models (LLMs) in generating natural language mathematical
proofs for complex, previously unseen problems. To achieve this, we leverage the LLM-as-a-
judge framework, developed and refined in the previous chapter, as our primary evaluation
tool. This allows for a systematic and rubric-based assessment of the LLM-generated proofs,
providing nuanced insights into their correctness, logical coherence, and completeness. The
problems are sourced from an advanced textbook, ensuring a high degree of difficulty.

5.1 Methodology

Our methodology for evaluating LLM proof-writing capabilities centers around presenting
LLMs with challenging proof problems and then using our LLM-as-a-judge framework to
score the generated solutions. The core components of this process are the problem instances,
the inclusion of contextual information, and the evaluation procedure.

Problem Instances: (Question, Staff Answer, Rubric) Tuples

Each problem instance in our evaluation set is defined by a tuple consisting of:

1. The Question: The mathematical proof problem statement as presented in the source.

2. The Staff Answer (Ground Truth Solution): A detailed, correct solution to the
problem, typically mirroring a model solution one might expect from an expert or find
in a solutions manual. This serves as the gold standard.

3. The Rubric (Ground Truth Rubric): A detailed, points-based rubric specifically
designed for the question, outlining key logical steps and criteria for evaluating a proof.
This rubric is used by the LLM-as-a-judge framework to score the LLM-generated
proofs.
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Below is an example of such a tuple, derived from Exercise 0.0.5 of Roman Vershynin’s
“High-Dimensional Probability.”

Question: Prove the inequalities( n

m

)m

≤
(
n

m

)
≤

m∑
k=0

(
n

k

)
≤

(en
m

)m

for all integers m ∈ [1, n].

Solution:
Fix some m ∈ [1, n]. We
first show (n/m)m ≤

(
n
m

)
.

This is because
(n/m)m

(n
m)

=
∏m−1

j=0

(
n
m

m−j
n−j

)
≤ 1
as n−j

m−j
≥ n

m
for all j.

The second inequality(
n
m

)
≤

∑m
k=0

(
n
k

)
is trivial

since
(
n
k

)
≥ 1 for all k.

The last inequality is due to∑m
k=0 (

n
k)

( n
m)

m ≤
∑n

k=0

(
n
k

) (
m
n

)k

=
(
1 + m

n

)n
≤ em.

Rubric: max score: 8
+1: Fix an integer m with 1 ≤ m ≤ n.

+1: Express
( n
m)

m

(n
m)

=
∏m−1

j=0
n
m

m−j
n−j

, using the definition of

the binomial coefficient.
+1: Prove that for all j, n

m
m−j
n−j

≤ 1 by showing n−j
m−j

≥ n
m
,

which holds because n−j
m−j

− n
m

= (n−m)j
m(m−j)

≥ 0 given n ≥ m
and m− j > 0.
+1: Conclude that the product

∏m−1
j=0

n
m

m−j
n−j

≤ 1, implying(
n
m

)m ≤
(
n
m

)
, since all factors are positive and less than or

equal to 1.
+1: Note that

(
n
m

)
≤

∑m
k=0

(
n
k

)
, as the sum includes

(
n
m

)
and

other non-negative binomial coefficients
(
n
k

)
≥ 0 for k = 0

to m.

+1: Consider the ratio
∑m

k=0 (
n
k)

( n
m)

m and bound it above by∑n
k=0

(
n
k

) (
m
n

)k
, by observing that for k ≤ m,

(
n
k

) (
m
n

)m ≤(
n
k

) (
m
n

)k
since m

n
≤ 1 implies

(
m
n

)k ≥
(
m
n

)m
, and extending

the sum to k = n adds non-negative terms.

+1: Recognize that
∑n

k=0

(
n
k

) (
m
n

)k
=

(
1 + m

n

)n
, using the

binomial theorem which states (a + b)n =
∑n

k=0

(
n
k

)
an−kbk

with a = 1 and b = m
n
.

+1: Apply the inequality
(
1 + m

n

)n ≤ em, which follows
from the fact that (1 + x)n ≤ enx for x > −1 (here x = m

n
),

to conclude
∑m

k=0 (
n
k)

( n
m)

m ≤ em, so
∑m

k=0

(
n
k

)
≤

(
en
m

)m
.

Figure 5.1: Sample [Question, Answer, Rubric] tuple for evaluating LLM-as-a-judge. Corre-
spondence between the solution and LLM-generated rubric is shown in color. Note that the
rubric-generation process is able to infer logical steps not explicitly stated in the solution.
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Contextual Information: Textbook Excerpt

To test the LLM’s ability to reason from and apply learned concepts, rather than relying
solely on its pre-trained knowledge (zero-shot learning), we include contextual information
in the prompt provided to the LLM for proof generation. Specifically, for each problem, we
append the chapter from the textbook immediately preceding the exercise problem. This
provides the LLM with relevant definitions, theorems, and previously established results that
might be instrumental in constructing the required proof, mimicking how a student might
refer to recent material.

Proof Generation and Evaluation Process

The overall process is as follows: For each problem instance (Question, Staff Answer, Rubric):

1. The LLM is prompted with the Question and the relevant textbook context.
2. The LLM generates a natural language mathematical proof.
3. The generated proof is then evaluated using our LLM-as-a-judge framework. The

framework is supplied with the generated proof, the original Question, the Staff Answer,
and the detailed ground truth Rubric for that specific problem.

4. The LLM-as-a-judge outputs a score (and qualitative feedback) based on the rubric
provided, reflecting the quality and correctness of the LLM-generated proof.

This structured approach allows us to systematically assess LLM performance across a range
of difficult proof problems, with and without specific contextual grounding from the textbook.
We generated the rubric using Grok 3 mini, and evaluated the proofs generated by both Grok
3 mini (xAI, 2025) and Deepseek-R1 (DeepSeek-AI et al., 2025), with Grok 3 mini serving
as the judge. We used two state-of-the-art reasoning models to gauge the current frontier
in mathematical reasoning. Grok 3 mini was used for the LLM-as-a-judge evaluation to
maintain consistency with our work in Chapter 4.

5.2 Results

The performance of the LLM in generating proofs was evaluated on our data set. We
measured the average percentage score achieved by the LLM, as determined by the LLM-as-
a-judge framework using the ground truth rubrics. This was done for proofs generated with
and without the appended textbook context. The results are shown in Table 5.1 below:
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average score fully correct %
Grok 3 mini with context 0.571 26.0%
Grok 3 mini without context 0.443 19.5%
Deepseek-R1 with context 0.625 27.3%
Deepseek-R1 without 0.572 23.4%

Table 5.1: LLM performance on the benchmark, with and without context.

An immediate observation is that, with or without additional context, the models’ per-
formances are far from perfect. In fact, the best performing approach, Deepseek-R1 with
additional context, is only able to fully complete the proofs 27.3% of the time. This suggests
that the benchmark is sufficiently difficult that state-of-the-art models are unable to trivially
succeed in it.

We also note that providing the proceeding chapter indeed improves the models’ performance,
both in terms of average score and percentage of fully correct proofs. This is in line with
our expectation. This improvement warrants further research into methods to further guide
LLMs to reason using a provided knowledge base, in the hopes that it can grasp the deeper
mathematical concepts and relationships within the text.

Additionally, we can aggregate the performances by chapter:

Chapter number 0 1 2 3 4 5 6
Number of questions 2 4 23 17 15 7 9
Grok with context 0.482 1.000 0.559 0.514 0.611 0.488 0.540
Grok without context 0.482 1.000 0.365 0.430 0.449 0.447 0.396
Deepseek with context 0.875 0.719 0.603 0.603 0.607 0.659 0.633
Deepseek without context 0.794 0.928 0.494 0.471 0.599 0.727 0.589

Table 5.2: LLM performance on the benchmark, aggregated by chapters

The data suggests variability in performance based on the problem set and the availability of
context. However, for most chapters, providing context led to an increase in performance for
both models. These results suggest further investigation into how the nature of the problems
(proof type, topic, etc.) may affect the LLM’s ability to utilize context and perform complex
reasoning.
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Chapter 6

Discussion

This work aimed to address critical gaps in evaluating the advanced mathematical reasoning
capabilities of LLMs, particularly in the domain of natural language proof generation. We
introduced two primary contributions: an LLM-as-a-judge framework for assessing natural
language mathematical proofs and a new benchmark of PhD-level proof-based questions
evaluated using this framework. Our findings provide insights into the current strengths
and, more notably, the persistent limitations of LLMs in tackling complex mathematical
reasoning.

Our first major contribution, the development and evaluation of an LLM-as-a-judge frame-
work, demonstrated considerable success. The results presented in Chapter 4 (Table 4.1
and Figure 4.2) indicate that incorporating a rubric significantly enhances the LLM’s ability
to evaluate mathematical proofs in alignment with human expert judgment. Critically, the
framework utilizing an LLM-generated rubric also showed strong performance, achieving a
Pearson correlation of 0.857 relative to the human expert evaluation. This finding is particu-
larly significant as it addresses a key challenge highlighted in our introduction: the difficulty
of grading natural language proofs consistently and at scale due to the typical reliance on
manual expert evaluation. The ability to automatically generate a relevant rubric based on
the problem and sample solution, and then use an LLM to judge according to this rubric,
offers a promising path towards more scalable and adaptable evaluation methodologies for
natural language mathematical arguments. Thus, this component provides a valuable tool
for future research and benchmarking efforts in this area, moving beyond the limitations of
benchmarks that focus solely on numerical outputs or require translation into formal systems.

Leveraging our LLM-as-a-judge framework (specifically, the approach using an auto-generated
rubric based on the findings in Chapter 4), the second component of our study assessed the
capabilities of current LLMs in generating natural language proofs for our new benchmark.
The results from this investigation, detailed in Chapter 5 (Table 5.1), suggest further room
for improvement. Despite the remarkable advancements in LLM architecture and prompt-
ing techniques, the performance on these complex proof-based tasks indicates that current
models, such as the Grok 3 mini and Deepseek-R1 used in our experiments, are generally
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still unable to adequately complete them. The average percentage scores achieved, even with
contextual information, often remained low across various chapters of the advanced textbook
from which problems were sourced. Many chapters show average scores around 40-60%. On
the other hand, this is evidence that our benchmark is challenging enough to be valuable in
evaluating models’ mathematical reasoning capabilities.

These findings lend support to the concerns raised in the introduction regarding a potential
“reasoning illusion,” where success on benchmarks emphasizing numerical answers or less
complex problem structures might not fully translate to an ability to construct intricate
arguments that require deep mathematical insight. This emphasizes the continued neces-
sity for challenging benchmarks, like the one introduced, that probe these deeper reasoning
abilities and provide a more accurate measure of LLM capabilities.

6.1 Limitations

While our study provides valuable insights into both LLM-based evaluation and generation
of mathematical proofs, it is important to acknowledge its limitations. Firstly, our LLM-
as-a-judge evaluation done in Chapter 4 was conducted using only one model, Grok 3 mini.
While a capable model, its performance might not be representative of all LLMs, which
themselves are rapidly evolving. Different architectures or models trained with different
data or methodologies might yield different results on our benchmark.

Our LLM-as-a-judge framework, while showing promising correlation with human scores, is
not a perfect substitute for nuanced human expert evaluation. Mathematical reasoning can
be subtle, and LLM judges may still possess inherent biases. The models also may not fully
comprehend more nuanced logical flaws or may discount novel correct approaches not covered
by the sample solution. The high Pearson correlations, while indicative of a strong positive
relationship, is only the first step towards an LLM-as-a-judge proof evaluation format that
is suitable for wide-scale use.

Additionally, we evaluated our LLM-as-a-judge framework using undergraduate linear alge-
bra proofs. The LLM-generated rubric approach we settled on may not perform to the same
capacity for more complex mathematical arguments such as those included in our benchmark.

Our new benchmark, while comprising 77 challenging PhD-level questions, represents a spe-
cific selection of problems from a particular domain (high-dimensional probability and re-
lated linear algebra). The performance observed might vary with problems from different
mathematical fields or of different styles.
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Chapter 7

Conclusion and Future Directions

In conclusion, this paper has presented an LLM-as-a-judge framework that demonstrates
significant promise for the scalable evaluation of natural language mathematical proofs. This
framework shows high agreement with human expert graders, particularly when guided by
rubrics, including those automatically generated by an LLM. This addresses a critical need
for efficient evaluation methods in mathematical AI. However, when this framework was
applied to assess LLM-generated proofs for our new, challenging benchmark of 77 PhD-level
problems, we find that current leading LLMs, despite recent advancements, are largely still
unable to fully and reliably solve these complex tasks. The significant improvement derived
from naively providing contextual information suggests that the models are, at some level,
leveraging the text and building mathematical knowledge.

These findings have significant implications. They reaffirm the necessity for rigorous bench-
marks that test the limits of AI’s mathematical abilities. These benchmarks should move
beyond surface-level assessments and instead fundamentally gauge the model’s mathemati-
cal understanding. Our development of an LLM-as-a-judge framework for natural language
mathematical arguments offers a practical tool for researchers by providing a more efficient
means of evaluation than manual grading. This may accelerate the development, testing,
and iteration of new models and techniques.

Looking ahead, these insights pave the way for several crucial directions for future research:

• Refining LLM-as-a-Judge Systems: While our rubric-based approach is promising,
efforts should continue towards achieving even higher alignment with human expert
evaluation. This may involve additional fine-tuning or RL methods. Additionally, a
particularly important and challenging extension would be to develop and assess the
efficacy of LLM-as-a-judge frameworks for mathematical proofs in scenarios where a
ground truth sample solution does not exist. This capability would be invaluable for
evaluating novel conjectures or student solutions to unseen problems. However, this
would require the LLM-judge to evaluate correctness and rigor based on fundamental
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mathematical principles and the problem statement alone, which would be a daunting
task.

• Expanding Benchmark Scope and Robustness: The continuous development
and expansion of diverse and challenging proof-based benchmarks are essential. While
our benchmark of 77 PhD-level questions provides a valuable testbed, future work
must involve more robust testing across a wider range of mathematical textbooks,
domains (e.g., abstract algebra, topology, analysis), and difficulty levels. This will
help ensure that developed capabilities are generalizable and not specific to the style
or content of a single source or narrow field. This will help foster more universally
capable mathematical AI and mitigate issues such as benchmark saturation.

• Enhancing Intrinsic LLM Reasoning Capabilities: There is a clear need to
improve the fundamental mathematical reasoning skills of LLMs. This could involve
exploring novel architectures, developing training paradigms that explicitly focus on
logical deduction and proof structure, or advancing neuro-symbolic approaches. Future
work should investigate more sophisticated modeling methods to improve LLM ability
on these proofs by more efficiently leveraging the provided knowledge base (in our case,
the textbook), perhaps by training models to iteratively understand and build upon
concepts, mimicking a structured human learning process.
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